Phenomenological analysis of superplasticity due to isothermal martensitic transformation.
نویسندگان
چکیده
منابع مشابه
Stress-Assisted Isothermal Martensitic Transformation Application to TRIP Steels
Low-temperature plastic flow in TRIP steels has been found to be controlled by stress-assisted isothermal martensitic transformation. For these conditions, the thermodynamics and kinetic theory of martensitic transformations leads directly to constitutive relations predicting the dependence of flow stress on temperature, strain, strain-rate, and stress-state, consistent with the observed behavi...
متن کاملIsothermal martensitic transformation in metamagnetic shape memory alloys
We show that in metamagnetic shape memory alloys exhibiting a magnetostructural first order phase transition the direct transition from ferromagnetic austenite to nonmagnetic martensite is isothermal. In contrast to the direct transformation, the reverse one nonmagnetic martensite–ferromagnetic austenite is athermal, just as are athermal both direct and reverse martensitic transformations in co...
متن کاملIsothermal Martensitic Transformation as an Internal-Stress-Increasing Process
Based on the results that the magnitude of the stabilization of retained austenite increases with increasing the amount of martensite transformed, it has been assumed that the martensitic transformation is accompanied with an increase in internal resisting stress which subsequently results in the stabilization of retained austenite. By simplifying this internal resisting stress to be a type of ...
متن کاملTRANSFORMATION SUPERPLASTICITY OF SUPER a2 TITANIUM ALUMINIDE
ÐTransformation superplasticity of an intermetallic Ti3Al-based alloy (Super a2) is demonstrated by thermal cycling about the a2/b transformation temperature range under a uniaxial tensile biasing stress. Failure strains up to 610% were recorded at a stress of 3 MPa, compared with 110% for deformation by isothermal creep at the same stress. The strain increment produced during each half-cycle i...
متن کاملHydrogen-induced transformation superplasticity in zirconium
Commercially-pure zirconium is alloyed and dealloyed repeatedly with hydrogen at 810 C, thereby cyclically triggering phase transformations between hydrogen-free a-Zr and hydrogen-alloyed b-Zr. Under an externally applied tensile stress, the internal mismatch stresses produced by the a-b transformations are biased, resulting in the accumulation of strain increments after each chemical cycle in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Society of Materials Science, Japan
سال: 1987
ISSN: 1880-7488,0514-5163
DOI: 10.2472/jsms.36.249